

Effect of High Pressure on the Kinetics and Mechanism of Thermolysis of Organic Peroxides in Solution

V. L. Antonovskii* and V. M. Zhulin**

* Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991 Russia

** Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119992 Russia

Received June 5, 2002

Abstract—This review analyzes published data and experimental results obtained by the authors concerning the effect of high pressure on the chemical kinetics of thermal decomposition of the main types of organic and organosilicon peroxides in solution. The volume effect of activation was found to depend on the mechanism of peroxide decomposition and on the properties of solvents.

High reactivities and various structures of organic peroxides are responsible for their wide use in chemistry and chemical technology [1–4].

Pressure is one of the most important factors affecting the rates and directions of chemical reactions. Knowledge of reaction volume characteristics, which are derived from the pressure dependence of the reaction rate, provides an opportunity to refine the structure of the transition state and the reaction mechanism. A study of the effect of high pressure on the thermal transformations of peroxide compounds (dialkyl peroxides, peroxycarbonates, etc.) is of particular practical interest because they are commonly used as initiators for the radical polymerization of ethylene [5–11]. This high-pressure polymerization is commercially implemented on a large scale. Polyethylene and its copolymers are produced with the use of radical initiators at pressures of 150–300 MPa and temperatures of up to 280°C. The manufacturing unit capacity of high-pressure polyethylene production is as high as hundred thousands of tons per annum.

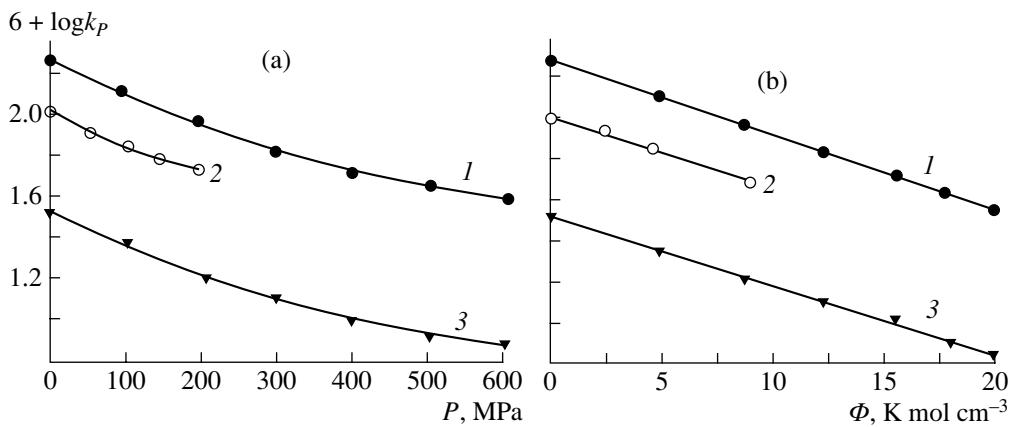
Depending on the thermal stability of the peroxide in use and on the reactivity of the resulting radical products of thermolysis, the process parameters of polymerization and the quality of the resulting polymer are changed. As the temperature is increased, the rate of ethylene conversion increases; this increase is accompanied by a decrease in the average molecular weight of polyethylene, an increase in its branching, and an increase in the double bond content. An increase in the pressure increases the rate of the process, the molecular weight, and the density of the product.

The effect of pressure on the rate constant of a chemical reaction at a constant temperature is described by the equation

$$\left(\frac{\partial \ln k}{\partial P}\right)_T = -\frac{\Delta V^\ddagger}{RT}, \quad (1)$$

where ΔV^\ddagger is the volume effect of activation—the change in the volume on the formation of 1 mol of an activated complex.

General principles used in studies of the effect of pressure on chemical reactions, including homolytic transformations, were considered in [12–17]. The value of ΔV^\ddagger determined at atmospheric pressure is designated ΔV_0^\ddagger . The sign of ΔV_0^\ddagger indicates the sense of changing the reaction rate constant with pressure. The value of ΔV_0^\ddagger at a given P is determined from the slope of a curve plotted for the logarithm of the reaction rate constant as a function of pressure. Some authors calculated ΔV_0^\ddagger from the slope of a straight line drawn through the initial points of the experimental $\ln k_P - P$ relationship, where k_P is the reaction rate constant at pressure P .


A number of functions were proposed for the determination of ΔV_0^\ddagger from experimental data; these functions were considered by El'yanov and Vasylvitskaya [14]. El'yanov and coauthors [14, 17] recommended the following linear free-energy relationship for nonionic, in particular, homolytic, reactions:

$$\log \frac{k_P}{k_0} = -\frac{\Delta V^\ddagger \Phi}{T}, \quad (2)$$

where the subscripts P and 0 refer to pressure P and atmospheric pressure, respectively, and Φ is a function of pressure; these functions are identical for related reactions and different for reactions of different types. For nonionic liquid-phase reactions,

$$\Phi = \left[(1 + \alpha)P - \frac{\alpha}{\beta}(1 + \beta P) \right] / R \ln 10, \quad (3)$$

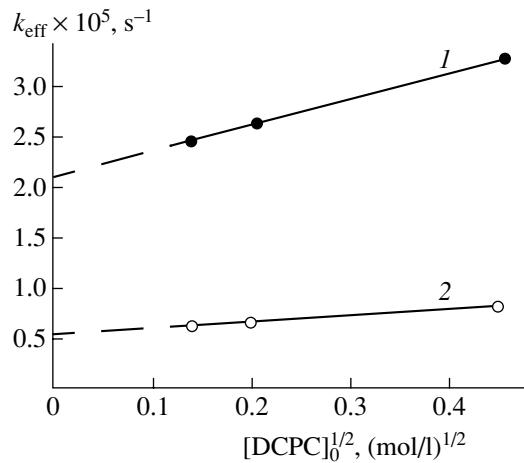
where α can be taken as equal to 0.170 and β is approximately equal to $4.94 \times 10^{-8} \text{ Pa}^{-1}$. These coefficients

Fig. 1. $\log k_P$ as a function of (a) pressure or (b) parameter Φ in the decomposition of dicyclohexylperoxydicarbonate in (1) acetonitrile, (2) benzene, or (3) toluene. $C_0 = 0.2$ mol/l; $T = 323$ K.

were obtained from accurate data for a Diels–Alder reaction.

Data optimization for many reactions resulted in different values of α and β . However, the values of Φ calculated with the use of both pairs of the coefficients differ only within 2 or 3% at pressures up to 400 MPa.

Figure 1 demonstrates the dependence of $\log k_P$ on pressure and the parameter Φ for the decomposition of dicyclohexylperoxydicarbonate [18] ($\Delta V^\ddagger = 10 \pm 0.5$ cm 3 /mol).


Note that, although the values of ΔV^\ddagger are of the same order, all of the ΔV^\ddagger values obtained by different procedures used for experimental data processing are significantly different (see Table 1 for some compounds). Equation (2) makes it possible to determine ΔV_0^\ddagger from only two rate constants measured at two pressures. For complex processes including a number of elementary steps, ΔV^\ddagger of the overall process is the sum of the activation volumes of elementary steps. In this case, only the ratio between rate constants and the total activation volume can be determined.

Problems associated with the interactions of reactants with each other and of the transition state with the solvent, as well as with the cage effect in homolytic reactions, occur in studies of the effect of pressure on reactions in solutions. Because the initial reactants and the transition state interact with the solvent, the experimentally determined effective activation volume ΔV_0^\ddagger is the sum of structural changes on the formation of the transition state and the solvation volume $\Delta V_{\text{sol}}^\ddagger$, which is the sum of volume changes of reactants, the transition state, and their solvate shells under the action of the solvent. In the simplest cases when these changes are determined by only the dipole–dipole interaction, the Kirkwood equation can be used. However, in reality,

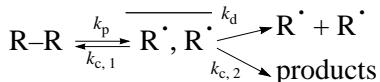
the interaction of the solvent and reactants is not restricted by only electrostatic forces.

The viscosity of liquids significantly increases with pressure; consequently, translational and rotational movements of reacting particles are slowed down. In thermal reactions accompanied by the homolysis of bonds, the reactions of resulting radicals in solvent cages are of considerable importance. Evidently, the viscosity changed under the action of pressure affects the rates and ratios between these reactions. As a result, the experimentally determined volume effect of activation is changed.

The viscosity dependence of the rate constant of decomposition k_d of an initiator is observed when only one bond is cleaved, because with the simultaneous cleavage of two bonds radicals are formed at a distance, which excludes their recombination in a cage. Accord-

Fig. 2. Concentration dependence of the effective rate constant of dicyclohexylperoxydicarbonate (DCPC) decomposition ($k_{\text{eff}} = k_1 + k_{\text{ch}}[\text{DCPC}]^{1/2}$) in toluene at a pressure of (1) 0.1 or (2) 500 MPa; $T = 323$ K.

Table 1. Volume effects of activation in the thermolysis of azo compounds


Compound	Solvent	T, K	P, MPa	ΔV [‡] , cm ³ /mol			Reference
				published data	calculated by Eq. (2)	calculated by Eq. (1)	
Di- <i>tert</i> -butyl hyponitrite	<i>n</i> -octane	328	0.1–620	4.4	7.1	4.3	[19]
Azocumene	cumene	328	0.1–610	5.3	8.5	5.0	[20]
	chlorobenzene	328	0.1–610	4.7	6.5	4.3	[20]
(Phenylazo)triphenylmethane	<i>n</i> -octane	323	0.1–421	16.9	25.5	16.4	[21]
	cumene	323	9.1–421	20.2	29.2	18.8	[21]

ing to Le Noble [22], the true volume effects of activation $ΔV_t^‡$ for various reactions are the following:

Reaction type	$ΔV_t^‡$, cm ³ /mol
Bond cleavage	+10
Bond deformation	~0
Bond formation	-10
Substitution	-5
Diffusion-controlled	+20
Cyclization	0
Sterically hindered	(-)
Ionization	-20

In the homolytic cleavage of a bond in peroxides or azo compounds, $ΔV_t^‡ \approx 10$ cm³/mol, whereas $ΔV_t^‡ \approx 3$ –5 cm³/mol on the concerted cleavage of two bonds, which occurs with the formation of a compact transition state.

Table 2 summarizes actual values of $ΔV^‡$ for peroxide thermolysis reactions, which vary from 0 to 20 cm³/mol. The simple scheme of the cage effect

suggests that

$$k_{\text{eff}} = k_p(k_d/(k_c + k_d)) = k_p e,$$

where e is the fraction of radicals escaped from cages into the bulk, k_c is the rate constant of overall cage recombination reactions to form initial molecules and other molecular products of radical reactions, and k_d is the rate constant of radical diffusion from a cage to the bulk.

According to Zhulin [16], $(1 - e)/e = k_c/k_d$; then,

$$\left(-RT\left(\frac{\partial \ln \frac{1-e}{e}}{\partial P}\right)_T\right) = ΔV_c^‡ - ΔV_d^‡,$$

where $ΔV_c^‡$ and $ΔV_d^‡$ are the volume effects of activation of cage radical reactions and radical escape from the cage, respectively. Equating $ΔV_d^‡$ to the volume effect of viscous flow, we obtain

$$\left(\frac{\partial \ln V\eta}{\partial P}\right)_T = \frac{ΔV_d^‡}{RT}, \quad (4)$$

where V and η are the molar volume and the solvent viscosity, respectively. Because the molar volume decreases with pressure to a much lesser extent than the viscosity increases, $ΔV_d^‡$ is positive; this reflects the necessity of repulsing other molecules on the migration of a given molecule. For many solvents, this value lies within the range 10–20 cm³/mol; for example, $ΔV_d^‡ = 15$ cm³/mol for toluene. This results in a considerable difference between experimental $ΔV^‡$ and the $ΔV^‡$ characteristic of the reaction itself.

Based on the measurements of the volume effects of activation for the translational ($ΔV_{\text{tr}}^‡$) and rotational ($ΔV_r^‡$) movements of molecules in solution [47–49] (Table 3), Zhulin [13–15] substantiated this interpretation of the effect of pressure on k_c and k_d . Jonas [49] found that $ΔV_{\text{tr}}^‡$ is almost equal to the value of $ΔV_d^‡$ found from Eq. (4), and $ΔV_r^‡ \ll ΔV_{\text{tr}}^‡$.

Replacing $ΔV_c^‡ - ΔV_d^‡ = ΔV_r^‡ - ΔV_{\text{tr}}^‡$, we find that $ΔV_c^‡ - ΔV_d^‡$ in ordinary solvents can vary from -15 to 0 cm³/mol. That is, both systems in which the cage effect weakly depends on pressure ($ΔV_c^‡ \approx ΔV_d^‡$) and systems (for example, in benzene) in which k_c/k_d increases with pressure (that is, an increase in the pressure slows down cage radical reactions more weakly than radical escape from the cage) can occur. The work of Jonas [49] also suggests that molecular geometry is

Table 2. Volume effects of activation in the thermolysis of peroxides in solution

Peroxide and the main reaction of thermolysis	Solvent	T, °C	P, MPa	ΔV^\ddagger , cm ³ /mol	Reference	
Alkyl peroxides						
$\text{Me}_3\text{COOCMe}_3 \longrightarrow 2\text{Me}_3\text{CO}^\cdot$	2-isopropyl-1,3-dioxolane	130	980	11	[23]	
	2-(cyclohexyl)tetrahydropyran	130	500	21	[24]	
	heptane	140	230	10.5	[25]	
	heptane	160	230	7.9	[25]	
	heptane	180	230	11.6	[25]	
	heptane	190	230	8.6	[25]	
	heptane	200	230	10.1	[25]	
	isodecane	143–230	300	13.4	[6]	
	PhH	120	714	12.6	[26]	
	PhMe	120	527	5.4	[26]	
	CCl ₄	120	563	13.3	[26]	
	cyclohexane	120	584	6.7	[26]	
$\text{PhCMe}_2\text{OOCMe}_2\text{Ph} \longrightarrow 2\text{PhCMe}_2\text{O}^\cdot$	PhCH ₃	126	700	14.77	[27]	
	PhCD ₃	126	700	20.6	[27]	
	C ₆ D ₅ CD ₃	126	700	24.0	[27]	
	iso-PrPh	126	400	19.6	[27]	
	tert-BuPh	126	600	22.3	[27]	
	PhH	126	800	7.4	[27]	
3,3,4,4-Tetramethyl-1,2-dioxetane $\longrightarrow 2\text{Me}_2\text{CO}$	PhMe	60	100	9	[28]	
	PhCl	60	100	11	[28]	
Me(Et)C(OOCMe ₃) ₂	isodecane	200	200	22.3	[11]	
Diacyl peroxides						
$\text{Me}_2\text{CHC(O)OOC(O)CHMe}_2 \longrightarrow 2\text{Me}_2\text{CHC(O)O}^\cdot$	isooctane	50	300	-5.1	[29]	
[n-C ₇ H ₁₅ C(O)O-] ₂	isooctane	80–200	300	5.9	[6]	
[MeOC(O)(CH ₂) ₃ C(O)O-] ₂ $\longrightarrow 2\text{MeOC(O)(CH}_2)_3^\cdot + 2\text{CO}_2$	PhMe	70	980	1.6	[30]	
PhC(O)OOC(O)Me $\longrightarrow \text{PhC(O)O}^\cdot + \text{O C(O)Me}$	PhCl	96	190	4	[31]	
PhC(O)OOC(O)Ph $\longrightarrow 2\text{PhC(O)O}^\cdot$	CCl ₄	60	200	8.7	[32]	
	CCl ₄	70	300	8.7	[32]	
	acetophenone	80	150	4.8	[33]	
	allyl acetate	80	550	4.7	[33]	
[cyclo-C ₆ H ₁₁ OC(O)O-] ₂ $\longrightarrow 2\text{cyclo-C}_6\text{H}_{11}\text{OC(O)O}^\cdot$	MeCN	50	500	10.1	[18]	
	PhMe	50	500	11.9	[18]	
	PhH	50	200	7.9	[18]	
	cyclohexanol	50	200	13.7	[18]	
	cyclohexanone	50	200	15.8	[18]	
	isodecane	107	300	43	[6]	
[Me ₃ CCH ₂ CH(Me)CH ₂ C(O)O-] ₂	+2HR $\xrightarrow{\quad} 2\text{Me}_3\text{CCH}_2\text{CHMe}_2 + 2\text{CO}_2 + 2\text{R}^\cdot$	n-heptane	80	250	2.9	[34]
	$\xrightarrow{\quad} [\text{Me}_3\text{CCH}_2\text{CH(Me)CH}_2]_2 + 2\text{CO}_2$	n-pentadecane	80	200	2.8	[34, 35]
		PhMe	80	300	2.0	[35]

Table 2. (Contd.)

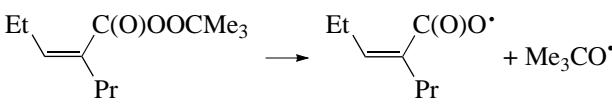
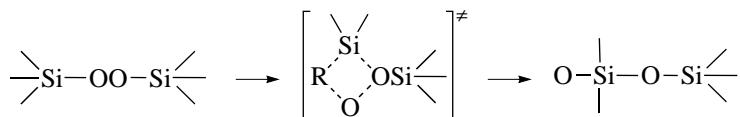

Peroxide and the main reaction of thermolysis	Solvent	T, °C	P, MPa	ΔV^\ddagger , cm ³ /mol	Reference
Peroxyesters	C ₂ H ₄ Cl ₂	70	300	3.0	[35]
	MeCN	70	300	0.88	[35]
Me ₂ CHC(O)OOCMe ₃ → Me ₂ CH [•] + CO ₂ + Me ₃ CO [•]					
Me ₃ CC(O)OOCMe ₃ → Me ₃ C [•] + CO ₂ + Me ₃ CO [•]	<i>iso</i> -PrPh	65	510	1.6	[36]
	<i>tert</i> -BuPh	65	500	0.3	[36]
	heptane	70	200	1.7	[37]
	heptane	80	200	2.8	[37]
	heptane	90	200	3.4	[37]
	heptane	105	200	1.2	[37]
	isodecane	80	300	5.9	[38]
	"	120	300	4.2	[38]
	"	140	300	6.2	[38]
	"	200	300	4.4	[38]
	"	80–200	300	6.1	[6]
	"	120–200	300	9.4	[6]
Me ₃ CC(O)OOCMe ₂ Et → Me ₃ C [•] + CO ₂ + EtMe ₂ CO [•]					
	"	120	300	9.2	[38]
	"	150	300	15.2	[38]
	"	200	300	11.6	[38]
Me ₃ CC(O)OOC(Me)(Pr)Bu → Me ₃ C [•] + CO ₂ + Bu(Pr)(Me)CO [•]					
	"	120	300	10.1	[38]
	"	140	300	14.6	[38]
	"	180	300	6.2	[38]
	"	200	300	7.0	[38]
Me ₃ CC(O)OOCMe ₂ CH ₂ CH ₂ CHMe ₂					
→ Me ₃ C [•] + CO ₂ + Me ₂ CHCH ₂ CH ₂ Me ₂ CO	"	120	300	10.7	[38]
	"	140	300	9.2	[38]
	"	200	300	8.6	[38]
Me ₃ C(CH ₂) ₅ C(O)OOCMe ₃					
Me ₃ C(CH ₂) ₅ C(O)OOCMe ₂ Et	"	100–200	300	6.1	[6]
Me(CH ₂) ₄ (Me)(Et)CC(O)OOCMe ₃					
→ Me ₃ CO [•] + CO ₂ + Me(CH ₂) ₄ (Me)(Et)C [•]	"	100	300	5.3	[38]
	"	130	300	7.1	[38]
	"	200	300	6.4	[38]
Me(CH ₂) ₄ (Me)(Et)CC(O)OOCMe ₂ Et					
→ EtMe ₂ CO [•] + CO ₂ + Me(CH ₂) ₄ (Me)(Et)C [•]	"	100	300	6.3	[38]
	"	130	300	7.5	[38]
	"	200	300	6.7	[38]
Me(CH ₂) ₄ (Me)(Et)CC(O)OOCMe ₂ CH ₂ CH ₂ CHMe ₂					
→ Me ₂ CHCH ₂ CH ₂ Me ₂ CO [•] + CO ₂ + Me(CH ₂) ₄ (Me)(Et)C [•]	"	100	300	9.3	[38]
	"	120	300	13.0	[38]
	"	200	300	5.5	[38]

Table 2. (Contd.)

Peroxide and the main reaction of thermolysis	Solvent	T, °C	P, MPa	ΔV^\ddagger , cm ³ /mol	Reference
	<i>iso</i> -PrPh	100.1	400	9.0	[19]
<i>cyclo</i> -C ₆ H ₁₁ C(=O)OCMe ₃ → <i>cyclo</i> -C ₆ H ₁₁ · + CO ₂ + Me ₃ CO·	"	79.6	410	3.9	[39]
PhCH ₂ C(=O)OCMe ₃ → PhCH ₂ · + CO ₂ + Me ₃ CO·	"	79.6	410	1.0	[40]
	"	79.6	610	0.5	[39, 40]
	"	85	410	1	[42]
	PhCl	79.6	410	1.5	[40]
	PhCl	79.6	410	1.0	[39]
X-C ₆ H ₄ CH ₂ C(=O)OCMe ₃ → X-C ₆ H ₄ CH ₂ · + CO ₂ + Me ₃ CO·	<i>iso</i> -PrPh	79.6	610	0.2	[41]
X = <i>para</i> -Me	"	79.6	610	0.2	[41]
X = <i>para</i> -MeO	"	79.6	610	1.6	[41]
X = <i>meta</i> -Cl	"	79.6	610	2	[42]
X = <i>para</i> -NO ₂	"	79.6	610	1.2	[41]
X = <i>para</i> -Cl	"	79.6	410	10.4	[39]
PhC(=O)OCMe ₃ → PhC(=O)O· + Me ₃ CO·	PhCl	79.6	410	12.9	[39]
Organosilicon peroxides					
Me ₃ SiOOCPh ₃ → MeOCMe ₂ OCPh ₃ , Me ₃ SiO·, Ph ₃ CO·	PhOCH ₃	170	1000	-3.5	[43]
Me ₃ SiOOCMe ₂ Ph → products	PhOMe	-	-	-	[43]
Ph ₃ SiOOCMe ₃ → products	"	-	-	-	[43]
[PhCH ₂ Me ₂ SiO-] ₂ → PhCH ₂ OSiMe ₂ OSiMe ₂ CH ₂ Ph	"	90	980	-8	[44]
Me ₃ SiOOSiMe ₃ → MeOSiMe ₂ OSiMe ₃	"	135	980	-10	[45]
[X-C ₆ H ₄ Me ₂ SiO-] ₂ → X-C ₆ H ₄ OSiMe ₂ OSiMe ₂ C ₆ H ₄ -X	"	80	590	-7.9	[46]
X = H	"	80	590	-9.6	[46]
X = <i>para</i> -MeO	"	80	590	-7.4	[46]
X = <i>para</i> -Me	"	80	590	-8.0	[46]
X = <i>para</i> -Cl	"	80	590	-8.0	[46]

more responsible for the interrelation between translational and rotational movements than dipole moment.


On this basis, it becomes clear why $\Delta V_{\text{eff}}^\ddagger$ in the decomposition of di-*tert*-butyl peroxide (see Table 2) varied from 5 to 13 cm³/mol depending on the solvent. In solvents with symmetric structures, $\Delta V_{\text{eff}}^\ddagger > \Delta V_P^\ddagger$, whereas $\Delta V_{\text{eff}}^\ddagger \approx \Delta V_P^\ddagger$ in an asymmetric solvent (toluene) because $\Delta V_c^\ddagger \approx \Delta V_d^\ddagger$.

However, this approach cannot also explain all the results observed in the dependence of the kinetics of homolysis on the properties of the solvent. Thus, in the thermolysis of *para*-nitrophenylazotriphenylmethane, $\Delta V_{\text{eff}}^\ddagger$ in cumene, *n*-octane, and *tert*-butylbenzene is equal to ~20 cm³/mol [19], although the degrees of symmetry are very different in these solvents. In this context, note that the classification of the volume effects of activation according to the number of simultaneously cleaved bonds in thermolysis is tentative.

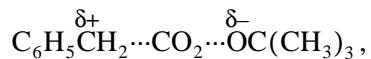
Table 3. Volume effects of activation (cm^3/mol) for the translational ($\Delta V_{\text{tr}}^{\ddagger}$) and rotational ($\Delta V_{\text{r}}^{\ddagger}$) movements of molecules in solution at 23°C

Solvent	$\Delta V_{\text{tr}}^{\ddagger}$	$\Delta V_{\text{r}}^{\ddagger}$	$\Delta V_{\text{r}}^{\ddagger} - \Delta V_{\text{tr}}^{\ddagger}$
Benzene	22.0	7.4	-14.6
Acetone	13.6	4.8	-8.8
Toluene-d ₃	14.4	10.4	-4.0
Chlorobenzene	11.2	11.7	0.5

The polar properties of a solvent for a number of peroxides can exert a crucial effect on the pressure dependence of the rate of thermolysis. Thus, in the thermolysis of *tert*-butylphenylperoxy acetate, the volume effect of activation is close to zero at pressures of 0.1–200 MPa and increases to only 3 cm^3/mol in the range

In this case, $\Delta V_{\text{eff}}^{\ddagger}$ is negative ($\Delta V^{\ddagger} = -8 \pm 2 \text{ cm}^3/\text{mol}$), and the thermolysis is accelerated with pressure; this was observed for $\text{Me}_3\text{SiOOSiMe}_3$, $\text{PhCH}_2\text{Me}_2\text{SiOOSiMe}_2\text{CH}_2\text{Ph}$; and $[\text{X}-\text{C}_6\text{H}_4-\text{Me}_2\text{SiO}-]_2$, where $\text{X} = \text{Cl}, \text{H}, \text{Me}$, or MeO (Table 2).

The asymmetric organosilicon peroxides $\text{Me}_3\text{SiOOCMe}_2\text{Ph}$, $\text{Ph}_3\text{SiOOCMe}_3$, and $\text{Me}_3\text{SiOOCPh}_3$ undergo decomposition via the following two parallel paths:


(1) with a rearrangement through a cyclic transition state with the formation of the $\text{ROSiOC}\equiv$ product;

(2) homolytically with initial O–O bond cleavage.

In these peroxides [43, 50–52], an increase in the pressure also increased the rate of thermolysis. This was observed in various solvents: *n*-nonane, toluene, cumene, *tert*-butylbenzene, cyclohexene, and anisole. In particular, in the case of trimethylsilylcumyl peroxide, the fraction of radical degradation products (dimethyl phenyl carbinol and acetophenone) remained almost unchanged with increasing pressure. However, based on a positive value of ΔV^{\ddagger} for homolytic O–O bond cleavage, a decrease in the yield of homolysis products with increasing pressure would be expected. Therefore, we can conclude that homolysis and decomposition with rearrangement of these peroxides occur via identical transition states.

In the thermolysis of diacyl peroxides, the contribution of chain decomposition to the overall rate of decomposition is considerable. As a rule, pressure enhances chain decomposition.

400–600 MPa [39]. Based on the polar structure of the transition state

it is believed that it is solvated with solvent molecules. The solvation of the transition state increases with increasing polarity of the solvent and, at the same time, partially compensates an increase in the volume of the transition state due to the simultaneous cleavage of two bonds.

The homolytic cleavage of a typical diacyl peroxide, diisobutyryl peroxide, was accelerated with increasing pressure ($\Delta V_{\text{eff}}^{\ddagger} = -5 \text{ cm}^3/\text{mol}$); this fact is also explained by solvation.

The thermolysis of organosilicon peroxides via a nonradical pericyclic mechanism occurs through the compact transition state, which is formed with the participation of several bonds of the parent compound,

Thus, the kinetics of benzoyl peroxide (BP) decomposition on thermolysis [53] is described by the equation

$$-\text{d}[BP]/\text{d}t = k_1[BP] + k_{\text{ch}}[BP]^{3/2} = k_{\text{eff}}[BP],$$

where k_1 and k_{ch} are the rate constants of unimolecular and chain induced decomposition, respectively, and $k_{\text{eff}} = k_1 + k_{\text{ch}}[BP]^{1/2}$. In this case, it was found that $\Delta V_1^{\ddagger} = 8.7 \text{ cm}^3/\text{mol}$ and $\Delta V_{\text{ch}}^{\ddagger} = -15 \text{ cm}^3/\text{mol}$.

The thermolysis of dicyclohexylperoxydicarbonate also occurs with a noticeable contribution of chain reactions (Fig. 2).

The values of ΔV_1^{\ddagger} and $\Delta V_{\text{ch}}^{\ddagger}$ for dicyclohexylperoxydicarbonate solutions in benzene, toluene, and acetone were found to be the same and equal to $\Delta V_1^{\ddagger} \approx \Delta V_{\text{ch}}^{\ddagger} \approx 11 \pm 0.5 \text{ cm}^3/\text{mol}$ [18, 27].

Carboxy inversion, which results in the formation of esters in the thermolysis of a number of diacyl peroxides,

occurs [53] with a great negative volume of activation and with lower activation energies and entropies than the simple processes of radical decomposition with the homolysis of O–O bonds.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 01-04-48132).

REFERENCES

1. Antonovskii, V.L., *Organicheskie perekisnye initsiatorы* (Organic Peroxide Initiators), Moscow: Khimiya, 1972.
2. Antonovskii, V.L., *Khimicheskie istochniki svobodnykh radikalov* (Chemical Sources of Free Radicals), Moscow: Znanie, 1980.
3. Antonovskii, V.L., *Progress v khimii organicheskikh peroksidov* (Advances in the Chemistry of Organic Peroxides), Moscow: TsNIITeftekhim, 1992.
4. Antonovskii, V.L., *Kinet. Katal.*, 1999, vol. 40, no. 1, p. 163.
5. Golosov, A.P. and Dintses, A.I., *Tekhnologiya proizvodstva polietilena i polipropilena* (Technology of Polyethylene and Polypropylene), Moscow: Khimiya, 1978.
6. Seidl, H. and Luft, G., *J. Macromol. Sci. Chem.*, 1981, vol. 15, p. 1.
7. Luft, G., Bitsch, H., and Seidl, H., *J. Macromol. Sci. Chem.*, 1977, vol. 11, p. 1089.
8. Luft, G., Mehrling, P., and Seidl, H., *Angew Macromol. Chem. Phys.*, 1978, vol. 73, no. 1118, p. 95.
9. Luft, G. and Seidl, H., *Angew. Macromol. Chem. Phys.*, 1985, vol. 129, no. 20, p. 61.
10. Luft, G., Lim, P.-C., Pavlakis, S., and Seidl, H., *J. Macromol. Sci.*, 1985, vol. 22, p. 1183.
11. Luft, G., Hennig, W., and Dorn, M., *Angew. Macromol. Chem. Phys.*, 1986, vol. 141, no. 2306, p. 207.
12. Neuman, R.C., *Acc. Chem. Res.*, 1972, vol. 5, p. 381.
13. Zhulin, V.M., *Rev. Phys. Chem.*, 1980, vol. 50, p. 217.
14. El'yanov, B.C. and Vasylyvitskaya, E.M., *Rev. Phys. Chem.*, 1980, vol. 50, p. 169.
15. Zhulin, V.M. and Stashina, G.A., *Khimiya organicheskikh peroksidov* (The Chemistry of Organic Peroxides), Emanuel', N.M., Ed., Volgograd: PI, 1982, p. 63.
16. Zhulin, V.M., *Fizicheskaya khimiya. Sovremennye problemy* (Physical Chemistry: Current Problems), Koltynkina, Ya.M., Ed., Moscow: Khimiya, 1984, p. 144.
17. El'yanov, B.S., Vasil'yitskaya, E.M., Zhulin, V.M., et al., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1985, p. 1973.
18. Zhulin, V.M., Lipovich, T.V., and Antonovskii, V.L., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1988, p. 1516.
19. Neuman, R.C. and Holmes, G.D., *J. Am. Chem. Soc.*, 1971, vol. 93, p. 4242.
20. Neuman, R.C., Lockyer, G.D., and Amrich, M.I., *Tetrahedron Lett.*, 1972, p. 1221.
21. Neuman, R.C. and Lockyer, G.D., *J. Am. Chem. Soc.*, 1983, vol. 105, p. 3982.
22. Le Noble, W.J., *J. Chem. Educ.*, 1967, vol. 36, p. 729.
23. Bortnikov, M.Ya., Zlotskii, S.S., Zorin, V.V., et al., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1977, p. 690.
24. Pastushenko, E.V., Bortnikov, M.Y., Zlotskii, S.S., et al., *React. Kinet. Catal. Lett.*, 1981, vol. 16, no. 1, p. 195.
25. Buback, M. and Lendle, H., *Z. Naturforsch.*, 1979, vol. 34, p. 1482.
26. Walling, C. and Metzger, G., *J. Am. Chem. Soc.*, 1959, vol. 81, p. 5365.
27. Lipovich, T.V., Zhulin, V.M., and Antonovskii, V.L., *Tez. dokl. VIII Vsesoyuznoi konferentsii po khimii organicheskikh peroksidov* (Proc. VIII All-Union Conf. on the Chemistry of Organic Peroxides), Leningrad, 1985, p. 12.
28. Schmidt, R., Steinmetzer, H.C., Brauer, H.D., et al., *J. Am. Chem. Soc.*, 1976, vol. 98, p. 8181.
29. Lamb, R.C., Pacifici, I.G., and Ayers, P.W., *J. Am. Chem. Soc.*, 1965, vol. 87, p. 3928.
30. Zhulin, V.M., Starostin, E.K., Moryasheva, S.I., and Nikishin, G.I., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1979, p. 1237.
31. Schulman, E.M., Merbach, A.E., and Le Noble, W.J., *J. Org. Chem.*, 1982, vol. 47, p. 421.
32. Nickolson, A.E. and Norrish, G.D., *Disc. Faraday Soc.*, 1956, vol. 22, p. 97.
33. Walling, C. and Pellon, J., *J. Am. Chem. Soc.*, 1957, vol. 79, p. 4782.
34. Buback, M. and Hinton, C., *Z. Phys. Chem.*, 1996, vol. 193, p. 61.
35. Buback, M. and Hinton, C., *Z. Phys. Chem.*, 1997, vol. 199, p. 229.
36. Neuman, R.C. and Pankratz, R.P., *J. Am. Chem. Soc.*, 1973, vol. 95, p. 8372.
37. Buback, M. and Lendle, H., *Z. Naturforsch.*, 1981, vol. 36, p. 1371.
38. Mehrling, P., Luft, G., Giese, B., et al., *Chem. Ber.*, 1985, vol. 118, p. 240.
39. Neuman, R.C. and Behar, J.V., *J. Am. Chem. Soc.*, 1969, vol. 91, p. 6024.
40. Neuman, R.C. and Behar, J.V., *J. Am. Chem. Soc.*, 1967, vol. 89, p. 4549.
41. Neuman, R.C. and Behar, J.V., *J. Org. Chem.*, 1971, vol. 36, p. 654.
42. Neuman, R.C. and Wolfe, R., *J. Org. Chem.*, 1975, vol. 40, p. 3147.
43. Zhulin, V.M., Rudakov, O.B., Stashina, G.A., et al., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1985, p. 1979.
44. Marriott, P.R. and Griller, D., *J. Am. Chem. Soc.*, 1981, vol. 103, p. 1521.
45. Yablokov, V.A., Ganyushkin, A.V., Bortnikov, M.Ya., et al., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1978, p. 484.
46. Yablokov, V.A., Ganyushkin, A.V., Bortnikov, M.Ya., et al., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1980, p. 950.
47. Bull, T.E. and Jonas, J., *J. Chem. Phys.*, 1946, vol. 52, p. 4553.
48. Parhkurst, H., Lee, Y., and Jonas, J., *J. Chem. Phys.*, 1971, vol. 55, p. 1368.
49. Jonas, J., *Ann. Rev. Phys. Chem.*, 1975, vol. 26, p. 167.
50. Ganyushkin, A.V., Yablokov, V.A., Stashina, G.A., et al., *VII Vsesoyuznoi konferentsii po khimii organicheskikh peroksidov* (Proc. VII All-Union Conf. on the Chemistry of Organic Peroxides), Volgograd, 1980, p. 235.
51. Zhulin, V.M., Stashina, G.A., Ganyushkin, A.V., et al., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1983, p. 1659.
52. Zhulin, V.M., Rudakov, O.B., Ganyushkin, A.V., et al., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1986, p. 2206.
53. Walling, C., Moulden, H.N., Waters, J.H., and Neuman, R.C., *J. Am. Chem. Soc.*, 1965, vol. 87, p. 518.